
DRAFT

TACTICAL CONTROL SYSTEM

DATA SERVER
INTERFACE DESIGN DESCRIPTION

VERSION 1.0

April 1997

Prepared by:

NAVAL SURFACE WARFARE CENTER, DAHLGREN DIVISION
Strategic and Strike Systems Department (K63)

Dahlgren, VA 22448

DS IDD DRAFT Version 1.0

i

Table of Contents

1. Scope... 1
1.1 Identification ... 1
1.2 System Overview .. 1
1.3 Document Overview.. 1

2. Reference Documents ... 2
2.1 Military Standards... 2
2.2 TCS Documents .. 2

3. Interface Design .. 3
3.1 Interface Identification and Diagrams ... 3
3.2 Data Types .. 3

3.2.1 Event Type ... 3
3.2.2 Status Type... 4
3.2.3 Instance Type ... 4
3.2.4 Callback Data Type.. 4
3.2.5 Callback Type .. 5
3.2.6 Generic Pointer .. 5

3.3 Constants... 5
3.4 Error Codes ... 6
3.5 Startup and Shutdown Services ... 6

3.5.1 Initialization ... 6
3.5.2 DS Reset... 6
3.5.3 Client Reset .. 7
3.5.4 Synchronization.. 8
3.5.5 Shutdown ... 8

3.6 Group Services.. 9
3.6.1 Create Group.. 9
3.6.2 Destroy Group.. 10
3.6.3 Enable Group ... 10
3.6.4 Disable Group .. 11
3.6.5 Standard Group .. 12
3.6.6 Find Object By Name... 12
3.6.7 Find Group By Name ... 13

3.7 Object Services ... 13
3.7.1 Create Object ... 13
3.7.2 Destroy Object ... 16
3.7.3 Set Object... 16
3.7.4 Get Object .. 17
3.7.5 Request Key for Object .. 18
3.7.6 Release Key for Object .. 18
3.7.7 Subscribe to Object .. 19
3.7.8 Unsubscribe to Object .. 19
3.7.9 Get Object Group... 20
3.7.10 Get Object Parent ... 20
3.7.11 Get Object Data Pointer ... 21
3.7.12 Get Object Size .. 21
3.7.13 Object Received Valid Data... 22
3.7.14 Object Received Write Key ... 23

3.8 Common Services ... 23
3.8.1 Register Callback ... 23
3.8.2 Get Name ... 24
3.8.3 Get Error Code... 24
3.8.4 Set User Data ... 25

DS IDD DRAFT Version 1.0

ii

3.8.5 Get User Data... 25
3.8.6 Set Trigger Event ... 26
3.8.7 Get Trigger Event... 26

3.9 Miscellaneous Services ... 27
3.9.1 Get Recent Group... 27
3.9.2 Get Recent Object .. 27

3.10 Representation and Description Engine (RADE) .. 28
4. Requirements Traceability .. 29
5. Notes ... 30

5.1 Overview... 30
5.1.1 General... 30
5.1.2 Groups.. 30
5.1.3 Objects ... 30
5.1.4 Normal Event Handling ... 30

5.2 Theory of Operation.. 30
5.2.1 The Event Model.. 30
5.2.2 Object Writer ... 31
5.2.3 Object Reader... 31
5.2.4 Object Subscriber... 31

5.3 The Subscription (Automatic Data Forwarding) ... 31
6. Acronyms .. 32

DS IDD DRAFT Version 1.0

1

1. Scope

1.1 Identification

This document provides an Interface Design Description (IDD) between the Data Server (DS) computer
software component (CSC) and client application CSCs for the Tactical Control System (TCS). The
interface described herein is referred to as the DS Application Program Interface (API). This IDD presents
the DS API with complete descriptions and specifications for each procedure and/or function call (i.e.,
service) available to client applications from the DS.

1.2 System Overview

TBD

1.3 Document Overview

This document is divided into five major sections. The following is a summary of the content of each major
section.

Section 1: Identifies the scope of this document.

Section 2: Provides a list of all documents referenced or used in the creation of this document.

Section 3: Provides detailed information on the interface design.

Section 4: Provides traceability of the interface design to software requirements.

Section 5: Provides general information that aids in the understanding of the DS and the use of the
DS API.

DS IDD DRAFT Version 1.0

2

2. Reference Documents

Copies of the specifications, standards, drawings, and publications listed in the next two subsections that are
required by suppliers in connection with specified procurement functions should be obtained from the
contracting agency or as directed by the contracting officer.

2.1 Military Standards

The following documents listed below form part of this specification to the extent of the organization and
format of this document.

DOD-STD-498 Military Standard, Software Development and Documentation

DI-IPSC-81436 Interface Design Description

2.2 TCS Documents

The following documents listed below form part of this specification to the extent of understanding the
requirements the DS and its API fulfill to accomplish their task. In the event of conflict between the
documents referenced and the content of this specification, the contents of this specification shall be
considered a superseding requirement. If the specified revision of the document is not listed, the current
approved issue of the document applies.

NSWCDD/96-XX/XXX TCS Software Design Description

NSWCDD/96-XX/XXX TCS Software Requirements Specification

NSWCDD/96-XX/XXX TCS Software Development Plan and Methodology

NSWCDD/97-XX/XXX Interprocess Communication Interface Design Description

DS IDD DRAFT Version 1.0

3

3. Interface Design

3.1 Interface Identification and Diagrams

The Data Sever API consists of three distinct but interrelated pieces:
1. The Interprocess Communication API, which provides the transport and event notification

mechanism;
2. The Data Server API itself, which provides the capabillity to create and logically organize data

objects; and
3. The Representation and Description Engine (RADE) API, which provides field level access to data

that is formated independent of any underlying machine architecture.

The Interprocess Communication package is used directly by the user to open/close a connection to the
Data Server as well as to receive notification of completed requests. For information on this package, see
the Interprocess Communication IDD. The DS API is used to send service requests to the Data Server via
its provided calls. The RADE API is used to access and check individual data fields within data objects
handled by the DS API. This chapter describes both the DS API and the RADE API.

This document describes only the interface of a client to the DS. Neither the DS API nor RADE API have a
project-unique identifier, but they are generally referred to collectively as the client DS API.

3.2 Data Types

3.2.1 Event Type

Description:
An event is a (symbolically-named) numeric response by the DS to a service request from a client (e.g.,
create an object). The primary use for events is in conjunction with the callback mechanism for
handling DS responses (see Chapter 5 for more information on this mechanism).

The DS reserves 1000 event identifiers (in the range -1000 to -1 inclusive) for this purpose. Currently,
it uses only a very small subset of these reserved identifiers. The type ds_event_typ defines this
subset.

Location:
#include <ds_api.h>

Specification:
typedef enum
{

null_event = -1,
create_event = -2,
destroy_event = -3,
get_event = -4,
set_event = -5,
request_key_event = -6,
release_key_event = -7,
subscribe_event = -8,
unsubscribe_event = -9,
create_group_event = -10,
destroy_group_event = -11,
enable_group_event = -12,
disable_group_event = -13,
sync_in_progress = -120,
sync_done_event = -121,

DS IDD DRAFT Version 1.0

4

sync_error = -122,
build_msg_event = -200,
get_group_list = -201

} ds_event_typ;

3.2.2 Status Type

Description:
The status type provides return status values for all DS service requests. It normally signifies the result
of the API submitting the request to the DS. It does not represent the final response from the DS for
the request. That response is returned via a DS event and the callback mechanism.

Location:
#include <ds_api.h>

Specification:
typedef enum { DS_FAILURE = -1, DS_SUCCESS = 0 } ds_status_typ;

3.2.3 Instance Type

Description:
An instance is the result of a create operation for a DS object or group. The instance type provides an
identifier for such an instance. It is an opaque type to the user and is used in DS service calls requiring
an instance as a parameter or in checking for a valid return from a service which returns an instance
(e.g., against the error return value NULL_INSTANCE).

Location:
#include <ds_api.h>

Specification:
typedef void *instance_typ;

3.2.4 Callback Data Type

Description:
The callback data type contains pertinent DS response information about a service request for an object
or a group. It is passed to callback routines associated with DS events. The fields of the callback data
type are as follows:

error_code The response from the DS to the client application regarding the service
request. A value of ERR_NO_ERROR indicates that the request was
successfully completed. The file interface_error.h defines the
valid values for this field. In Addition each service call enumerates errors
that may be returned.

object An instance type identifying the object/group to which the response
pertains.

object_data_ptr An indicator of the type of object to which the response pertains. If it is
NULL, then the object identifies a group; otherwise, it identifies a data
object (See ds_get_data_ptr).

user_data_ptr A pointer to a user-defined block of memory. This is the user_data_ptr
parameter originally passed to the ds_register_callback service in
associating the callback routine with the DS event.

DS IDD DRAFT Version 1.0

5

msg_ptr This field is only pertinent when the callback routine is an Ada procedure.
It points to an unconstrained array that is defined as a message type to Ada
in the specification file event_msg.ads. Warning: Do not access this
pointer from a nonAda procedure!

Location:
#include <ds_api.h>

Specification:
typedef struct
{

int error_code;
instance_typ object;
void *object_data_ptr;
void *user_data_ptr;
void *msg_ptr;

} callback_data_typ;

3.2.5 Callback Type

Description:
This type defines the prototype of a callback function to be associated with a DS event. The function
has two parameters. The first, event, is the DS event which caused the function to be called. The
second, data, is a callback data type, as described above, detailing the DS response for this event.

Location:
#include <ds_api.h>

Specification:
typedef void (*callback_typ) (int event, callback_data_typ *data);

3.2.6 Generic Pointer

Description:
This type defines a general pointer which can be used for any type of data structure. Its definition
differs depending on whether the user is ANSI C or Classic (K&R) C.

Location:
#include <ansi_decls.h>

Specification:
ANSI C: #define PTR void *
Classic C: #define PTR char *

3.3 Constants

This section describes the general constants used in support of the DS API.

Location:
#include <ds_api.h>

Specification
ds_standard_group_name TBD.

NULL_INSTANCE represents an error for those services that return instance_typ.

NO_TRIGGER represents the value for canceling trigger events.

DS IDD DRAFT Version 1.0

6

DS_NODE_NUMBER TBD.

3.4 Error Codes

If an API service request encounters an error in attempting to perform its designated function, it sets an
error code for the specific error and returns a general failure value to its caller (e.g., DS_FAILURE for a
service which returns ds_status_typ or NULL_INSTANCE for a service which returns instance_typ).
The descriptions of the services which follow indicate the specific error codes set by the services. These
error codes can be accessed via the get_errno service, which is part of the Interface Package.

The DS itself can also return an error code as part of its response to a service request. This code is returned
to the client in the callback data structure, which is passed to the callback routine associated with the DS
response event. If the client does not have a callback associated with the event, it can retrieve the DS-set
error code via the ds_get_error_code service.

The interface_error.h file defines the valid error codes. See Chapter 5 and the Interface Package
IDD for more details.

3.5 Startup and Shutdown Services

3.5.1 Initialization

Description:
The initialization service creates and initializes all the internal data structures for the DS API. It must
be called before any of the other API services, to establish a connection with the DS.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_init (void);

Parameters:
None

Returns:
ds_status_typ

DS Response:
NA

Error codes:
ERR_NO_MEMORY Memory could not be allocated for the internal data structures needed

for the interface.

3.5.2 DS Reset

Description:
The DS reset service is used to completely initialize the DS. To support “warm” restarts of part or all
of TCS, when the DS is first started, it creates all the objects that reside in the persistent data files,
thereby allowing it to “'remember”' data objects on behalf of client applications. The reset service
clears the persistent data files and destroys all the data objects known to the DS. It does not clear the
data object lists that resides in the calling client or in any other connected clients.

DS IDD DRAFT Version 1.0

7

This function should only be called by a “master client” immediately after the DS starts executing but
before other clients make a connection (as in performing a “cold” start/restart of TCS that is to ignore
any previously existing objects).

Location:
#include <ds_admin.h>

Specification:
ds_status_typ ds_master_reset (int destination);

Parameters:
destination The DS to which to send the master reset message.

Returns:
ds_status_typ

DS Response:
NA

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.3 Client Reset

Description:
The client reset service reinitializes the internal data structures for the DS API (i.e., destroys all objects
and groups that have been created). This service could be used as part of error recovery to clear the DS
API when it loses contact with the DS. In some cases, a client reset may be preferred to attempting a
synchronization (as described in the next section). Optionally, if the DS is still available, this service
can send a reset message to the DS requesting that all groups and objects belonging to the client
application be destroyed in the DS. In response to this message, the DS will release all the write keys
held by the client application, remove the client application from all subscription lists and destroy all
objects that have been created by the client application. This reset does not affect other client
applications other than another client application may receive a write key as a result of this reset
message.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_reset (int destination, int reset_ds);

Parameters:
destination The DS to which to send the client reset message
reset_ds A switch for sending a message to the DS to destroy all groups and

objects belonging to the client application. If it is 0, do not send the
client reset message to the DS; otherwise, send it.

Returns:
ds_status_typ

DS IDD DRAFT Version 1.0

8

DS Response:
NA

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.4 Synchronization

Description:
The synchronization service assists in error recovery when a DS unexpectedly terminates. Sync is used
to transmit all group and object information for a client to a new DS process. It prevents the client
from having to reset the API and recreate all of its groups, objects etc.. Sync also resubmits any
pending requests on behalf of the client (e.g., a request for a write key). If the ds_sync request returns
successfully (i.e., it returns DS_SUCCESS), the client must wait for an event response, either
sync_done_event or sync_error. sync_done_event indicates that the API is done sending
all of the group and object information to the DS and the synchronization process is completed.
sync_error indicates that the DS could not perform an operation which the API requested. During
the synchronization process, the client may receive one or more sync_in_progress events. These
events indicate to the client that the process is proceeding normally.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_sync (int destination);

Parameters:
destination The DS to which to send the synchronization messages.

Returns:
ds_status_typ

DS Response:
sync_in_progress
sync_done_event
sync_error

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.5.5 Shutdown

Description:
The shutdown service commands the DS to terminate in an orderly manner. It is called by a “master
client.” The DS, upon receipt of this message, closes the persistent data files, closes the data log file,
closes all client connections and then terminates itself. For a complete orderly shutdown of the DS and
any connected client, the 'master client' should inform the peer clients that the DS will be shut down.
Each peer client should then close its connection to the DS or should ignore the error message that
results from the DS closing the connection to the client.

DS IDD DRAFT Version 1.0

9

Location:
#include <ds_admin.h>

Specification:
ds_status_typ ds_shutdown (int destination);

Parameters:
destination The DS to which to send the shutdown message.

Returns:
ds_status_typ

DS Response:
NA

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.

3.6 Group Services

Groups provide a mechanism for associating data objects that have some common characteristic (e.g.,
represent a particular Air Vehicle for a particular mission). The objects in the group are the children of the
group, and the group is the parent of the objects it contains. Note: Objects can be arranged in parent-child
trees themselves, so the actual direct parent of a given object may be another object; however, the top-level
parent of that object will be the group which contains the root object of the parent-child tree containing the
object.

The standard group is a predefined group in the DS. It is available for containing objects that do not “fit”
into any user-defined group.

3.6.1 Create Group

Description:
The create group service creates a group with a given name for the client and registers that group with
the DS.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_create_group (int destination,

 char *group_name,
 int enable);

Parameters:
destination The DS to which to send the message for registering the group.
group_name The name of the group to create.
enable A switch for having the group enabled or disabled when created. If it

is 0, the group is disabled on creation; otherwise, the group is enabled
on creation.

Returns:
instance_typ

DS IDD DRAFT Version 1.0

10

DS Response:
create_group_event

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_MEMORY Memory could not be allocated to create the group.
ERR_PARAMETER A group with the given name already exists for this client.

3.6.2 Destroy Group

Description:
The destroy group service does the following:

1. Destroys the group and any child objects of the group for the DS API, and
2. Sends a message to the DS requesting that the group be destroyed.

The DS sends only one response for this request, i.e., for the destroy action on the group itself. It does
not send responses for any child objects that it destroys as a result of destroying the group.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_destroy_group (instance_typ group);

Parameters:
group An identifier for a group.

Returns:
ds_status_typ

DS Response:
destroy_group_event

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_PARAMETER If group is the standard group; or if there is a pending create or

destroy response for group (i.e., a create/destroy message has been
sent to the DS but the DS has not replied with the corresponding
event yet.)

ERR_UNKNOWN_GROUP group does not reference valid group.

3.6.3 Enable Group

Description:
The enable group service enables the receipt of subscriptions from objects that are members of the
selected group. Immediately upon receipt of the enable group request, the DS sends the issuing client
all objects from the group that have changed while the group has been disabled.

DS IDD DRAFT Version 1.0

11

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_enable_group (instance_typ group);

Parameters:
group An identifier for a group.

Returns:
ds_status_typ

DS Response:
enable_group_event
subscribe_event If the DS sends any outstanding subscriptions as a result of a group

being enabled, the client will receive a subscription event for each
outstanding subscription.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_UNKNOWN_GROUP The group does not reference a valid group.
ERR_PARAMETER The group has a pending create or destroy response (i.e., a

create/destroy message has been sent to the DS but the DS has not
replied with the corresponding event yet.)

3.6.4 Disable Group

Description:
The disable group service disables the receipt of subscriptions from objects that are members of the
group identified by the group parameter. Immediately upon receipt of the disable group request, the DS
marks the group as inactive for the client and stop sending the client subscriptions for objects that
belong to the group. If any of the group objects that the client has subscribed to change while the group
is disabled, the DS marks those objects as changed for subsequent forwarding to the client if the group
is re-enabled at a later time.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_disable_group (instance_typ group);

Parameters:
group An identifier for a group.

Returns:
ds_status_typ

DS Response:
disable_group_event

Error Codes:
ERR_NO _INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.

DS IDD DRAFT Version 1.0

12

ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_UNKNOWN_GROUP The group does not reference a valid group.
ERR_PARAMETER The group has a pending create or destroy response (i.e., a

create/destroy message has been sent to the DS but the DS has not
replied with the corresponding event yet.)

3.6.5 Standard Group

Description:
The standard group service returns the instance identifier for the predefined standard group.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_standard_group (int destination);

Parameters:
destination The DS for which to retrieve the standard group identifier.

Returns:
instance_typ

DS Response:
NA

Error Codes:
ERR_NO _INIT The interface has not been initialized.
ERR_PARAMETER

3.6.6 Find Object By Name

Description:
The find object by name service returns the instance of a data object with the given name if that object
is contained in the given group.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_find_object_by_name (instance_typ group,

 const char *object_name);

Parameters:
group The group to search for the object.
object_name The name of the object to find.

Returns:
instance_typ

DS Response:
NA

Error Codes:
ERR_PARAMETER If group does not reference a valid group.

DS IDD DRAFT Version 1.0

13

3.6.7 Find Group By Name

Description:
The find group by name service returns the instance of the group with the given name in the designated
DS.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_find_group_by_name (int destination,
 const char *group_name);

Parameters:
destination The DS in which to find the group.
group_name The name of the group to find.

Returns:
instance_typ

DS Response:
NA

Error Codes:
NA

3.7 Object Services

From the DS API point of view, an object is a collection of data that have meaning as a unit (e.g., flight
status for an Air Vehicle). Each object created by a client must belong to a group, although different
instances of the same object can be defined in different groups. Objects can also be arranged in hierarchical
trees, with one object serving as parent for one or more child objects on the next level away from the root
object of the tree.

The DS itself does not care about the data within an object. To the DS, the objects are simply buckets of
specified sizes. These buckets can be defined either by specifying the size of the bucket or by referencing a
data-object schema. The schema contains all of the information necessary for creating the object and
populating it with default data. It also provides a means of accessing individual datum fields within the
object via DS API services (see section 3.X).

Note: These services apply only to objects, i.e., they cannot be applied to an instance of a group. Groups
are collections of objects and do not contain data themselves, so it does not make sense to perform
operations such as getting a write key, setting, getting, etc., on them.

3.7.1 Create Object

Description:
The create object service provides an interface for creating a data object. It accepts either a size for the
object or an option specifying the object to be a RADE object. If the requester designates the object as
a RADE object, the service ignores the size parameter. In this case, all of the information need for
object creation comes from the object schema, which the DS can access via the object name. The DS
also makes the schema available to the DS API for use by the data accessing functions.

The create object service creates an object as follows:
1. Ensures that the size parameter > 0 (unless this is a RADE_OBJECT create),
2. Verifies that the parent has been created and has received a create response from the DS,

DS IDD DRAFT Version 1.0

14

3. Verifies that an object by the same name does not exist in the group to which the parent
belongs,

4. Allocates memory for the object, and
5. Sends a message to the DS requesting the creation of the object.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_create_object (int destination,

 instance_typ parent,
 char *object_name,
 short size,
 int options);

Parameters:
destination The DS to which to send the message.
parent The parent of the object being created; this may be either a group or

an object.
object_name The name of the object to create.
size The size of the object to be created.
options A bit field constructed by ORing option values from the following

list:

NO_OP This should be used in the absence of any other
option.

PERSISTENT_OP This object attribute indicates to the DS that
when a client ’sets’ the object a copy of the
object is written to the persistent storage file.

LOG_DATA_OP This object attribute indicates to the DS that
when a client ’sets’ the object a copy of the
object is written to the data log file.

WRITE_KEY_OP This is a request for the write key. This
eliminates the need for a separate write key API
call. When the client receives the key, the DS
will respond to it with a request_write_key
event. Alternatively, when the client receives
the create response from the DS, it can call
ds_received_write_key to determine if it was
successful in obtaining the key.

DS IDD DRAFT Version 1.0

15

SUBSCRIBE_OP This is a request by the client to be added to the
subscription list for the object. This eliminates
the need for a separate call to the subscribe API
call. If there is valid data for the object in the
DS, the DS will send a copy of the object to the
client and respond to the client with a
subscribe_event. Also, when the client receives
the create response from the DS, it can call
ds_received_valid_data to determine if the DS
sent object data along with the create response.
If ds_received_valid_data returns true, then the
clients copy of the data is current with the copy
held by the DS.

GET_DATA_OP This is a request by the client to get a copy of
the object data if the copy held by the is valid
(i.e., another client has ’set’ the object). This
eliminates the need for a separate call to the get
API call. If the DS sends a copy of the object to
the client, it also sends a get_event along with
it. Also, when the client receives the create
response from the DS, it can call
ds_received_valid_data to determine if the DS
sent object data along with the create response.
If ds_received_valid_data returns true, the
clients copy of the data is current with the copy
held by the DS. This option is especially useful
for retrieving data for an object that was created
with the PERSISTENT_OP attribute during a
previous DS execution.

RADE_OBJECT This is a request to the DS to create the object
via a schema. The size parameter has no
meaning when this option is used.

Returns:
instance_typ

DS Response:
create_event
request_key_event When the client receives the write key, if the create included option

WRITE_KEY_OP.
Subscribe_event When the client receives an initial copy of the object, if the create

included option SUBSCRIBE_OP.
Get_event When the client receives a valid copy of the object, if the create

included option GET_DATA_OP.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_PARAMETER size is invalid, i.e., greater than MAXSHORT as defined in

<values.h>.

DS IDD DRAFT Version 1.0

16

ERR_DUPLICATE The object already has been created as a child of parent.
ERR_NO_MEMORY Memory could not be allocated for the object.
ERR_NO_RESPONSE The client has not received the response from the service call to

create parent.

3.7.2 Destroy Object

Description:
The destroy object service destroys an object and its children as follows:

1. Verifies that the object is valid (has been created),
2. Verifies that the object does not have a pending destroy_event (i.e., the client has not already

requested the object be destroyed, either directly or as a child of another object),
3. Verifies that the object does not have a pending create_event,
4. Sends a destroy request to the DS, and
5. Marks the object and its children as destroyed.

The object and its children are not actually destroyed in the DS API until the client receives the destroy
response. When this happens, the API performs a recursive destroy of all of these objects.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_destroy_object (instance_typ object);

Parameters:
object The instance of an object to destroy.

Returns:
ds_status_typ

DS Response:
destroy_event One event for each object actually destroyed by the service (the input

object and each of its children).

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_PARAMETER The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.3 Set Object

Description:
The set object service sends the client copy of a data object to the DS, provided that the client holds the
write key for the data object.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_set (instance_typ object,
 int respond);

DS IDD DRAFT Version 1.0

17

Parameters:
object The instance of an object to set.
respond If nonzero, the DS is to respond to the client upon accomplishing the

set.

Returns:
ds_status_typ

DS Response:
set_event If the client has asked the DS to respond to this service request.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_WRITE_KEY_NOT_HELD The client does not hold the write key for the data object.

3.7.4 Get Object

Description:
The get object service requests that the DS send its copy of the data object to the client. The DS will
fulfill this request only if the data object has been ’set’.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_get (instance_typ object);

Parameters:
object The instance of an object to get.

Returns:
ds_status_typ

DS Response:
get_event

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

DS IDD DRAFT Version 1.0

18

3.7.5 Request Key for Object

Description:
To be able to set the client copy of an object instance into the DS, the client must hold the write key for
that object instance. There are two way for the client to get this key, by requesting it as an option when
creating the object instance or via this service.

The request key for object service requests the write key for a data object from the DS. The DS will
fulfill the request when the key is available (if not immediately). If the key is not available, the client is
put on a waiting list for the key. When the key is released by the holding client, the next client on the
waiting list will be sent the key. If the client already holds the key for a data object, it is not an error for
the client to request the key again. In this case, the DS will simply send a success response.

Location:
#include <ds_api.h>

Specification:
ds_status_type ds_request_key (instance_typ object);

Parameters:
object The instance of an object for which the client is requesting the write

key.

Returns:
ds_status_typ

DS Response:
request_key_event

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.6 Release Key for Object

Description:
The release key for object service requests the DS to release the client’s write key for a data object and
make it available for other clients to use (i.e., allow another client to set the data object).

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_release_key (instance_typ object,
 int respond);

Parameters:
object The instance of an object for which the DS is to release the write key.
respond If nonzero, the DS is to respond to the client upon releasing the key.

DS IDD DRAFT Version 1.0

19

Returns:
ds_status_typ

DS Response:
release_key_event If the client has asked the DS to respond to this service request.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.7 Subscribe to Object

Description:
The subscribe to object service requests that the DS add the client to the subscription list for the object.
Then, in response to a set request for the data object, the DS will send each client on the subscription
list a current copy of the data object. Also, in response to the subscription request, the DS will send the
requesting client a copy of the data object, if the data object contains valid data (i.e., if a client has set
the object).

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_subscribe (instance_typ object);

Parameters:
object The instance of an object to which the client wishes to subscribe.

Returns:
ds_status_typ

DS Response:
subscribe_event Each time the DS sends a copy of the data object to the client.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.8 Unsubscribe to Object

Description:
The unsubscribe to object service requests that the DS remove the client from the subscription list for
the object.

Location:
#include <ds_api.h>

DS IDD DRAFT Version 1.0

20

Specification:
ds_status_typ ds_unsubscribe (instance_typ object,
 int respond);

Parameters:
object The instance of an object to subscribe to.
respond If nonzero, the DS is to respond to the client upon removing the

object subscription.

Returns:
ds_status_typ

DS Response:
unsubscribe_event If the client has asked the DS to respond to this service request.

Error Codes:
ERR_NO_INIT The interface has not been initialized.
ERR_UNKNOWN_NODE The destination does not exist.
ERR_CONNECTION_RESET The connection was closed by a peer during message transmission.
ERR_UNKNOWN_ERROR A catchall for unanticipated errors.
ERR_NO_RESPONSE The object has a pending create or destroy response (the destroy

response can be either from itself or its parent).
ERR_UNKNOWN_OBJECT The object has not been created.

3.7.9 Get Object Group

Description:
The get object group service returns the identifier for the group to which the input object belongs.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_get_group (instance_typ object);

Parameters:
object The instance of an object for which to get the group.

Returns:
The group to which the object belongs if the object is valid; otherwise, NULL_INSTANCE.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_ERROR The object is a valid object.

3.7.10 Get Object Parent

Description:
The get object parent service returns the instance identifier for the parent of the input object. This
parent may be either a group or another object.

DS IDD DRAFT Version 1.0

21

Location:
#include <ds_api.h>

Specification:
instance_typ ds_get_parent (instance_typ object);

Parameters:
object The instance of an object for which to get the parent.

Returns:
The parent of the object if object is a valid identifier; otherwise, NULL_INSTANCE.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_ERROR The object is a valid object.

3.7.11 Get Object Data Pointer

Description:
The get object data pointer service returns a pointer to the data associated with the object. This service
produces a useful result only if the client created the object directly, not via a schema. In other words,
this service does not return any client-usable information for an object created with the
RADE_OBJECT option. It does not set any error code to indicate this condition; rather, it is the client’s
responsibility to know which objects it created directly and which it created as RADE_OBJECTs.

Location:
#include <ds_api.h>

Specification:
PTR ds_get_data_ptr (instance_typ object);

Parameters:
object the instance of an object for which to get the data pointer.

Returns:
A pointer to the data associated with the object, if object is a valid identifier; otherwise, NULL
Note: The pointer returned for an object created with the RADE_OBJECT option does not access the
actual object data, so it is of no use to a client!

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_ERROR The object is a valid object.

3.7.12 Get Object Size

Description:
The get object size service returns the size of the data block associated with the object. This service
produces a useful result only if the client created the object directly, not via a schema. In other words,
this service does not return any client-usable information for an object created with the

DS IDD DRAFT Version 1.0

22

RADE_OBJECT option. It does not set any error code to indicate this condition; rather, it is the client’s
responsibility to know which objects it created directly and which it created as RADE_OBJECTs.

Location:
#include <ds_api.h>

Specification:
int ds_get_object_size (instance_typ object);

Parameters:
object The instance of an object for which to get the data block size.

Returns:
The size of the object if object is a valid identifier; otherwise, -1.
Note: The size returned for an object created with the RADE_OBJECT option includes more than just
the object data block, so it is of no use to a client!

DS Response:
NA

Error Codes:
None

3.7.13 Object Received Valid Data

Description:
The object received valid data service allows the client to determine if the local object has received
data from the DS at any time during its existence (i.e., from a subscription, an explicit ds_get
request, or the ds_create_object GET_DATA_OP option).

Location:
#include <ds_api.h>

Specification:
int ds_received_valid_data (instance_typ object);

Parameters:
object The instance of an object to query.

Returns:
A nonzero value if object is a valid identifier and the local object has received data from the DS;
otherwise, 0.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_ERROR The object is a valid object.

DS IDD DRAFT Version 1.0

23

3.7.14 Object Received Write Key

Description:
The object received write key service allows the client to determine if the local object has received the
write key from the DS (either from an explicit ds_request_key request or from the
ds_create_object WRITE_KEY_OP option).

Location:
#include <ds_api.h>

Specification:
int ds_received_write_key (instance_typ object);

Parameters:
object The instance of an object to query.

Returns:
A nonzero value if object is a valid identifier and the local object has received the write key from the
DS; otherwise, 0.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object has not been created.
ERR_NO_ERROR The object is a valid object.

3.8 Common Services

3.8.1 Register Callback

Description:
The register callback service associates a client function with a DS event for an object or group. (See
Chapter 5 for more information on the use of callbacks and the event handling mechanism.) If the
client does not wish to provide a function, it should use one of the two predefined functions
default_func or ignore_func. The default_func is a directive to the DS API to pass event
notification to the client through the normal event notification mechanism. The ignore_func is a
directive to the DS API not to pass the event notification to the client. For both the default_func
and the ignore_func the API does all processing for the event as normal, including the functionality
of the set trigger API call.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_register_callback (instance_typ instance,
 ds_event_typ event,
 PTR user_data_ptr,
 callback_typ routine);

Parameters:
instance An object or group for which to register a callback
event One of the event identifiers (see Section 3.2.1)
user_data_ptr A pointer to a user-defined block of data

DS IDD DRAFT Version 1.0

24

routine A pointer to a function to be called when the event arrives from the
DS. If the client does not wish to provide a function, it should use
one of the two predefined functions:

default_func This function parameter is a directive to the DS
API to pass the event notification to the client
through the normal event handling mechanism.

ignore_func This function parameter is a directive to the DS
API not to pass the event notification to the
client.

Returns:
ds_status_typ

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_PARAMETER If event is not one of the event identifiers.

3.8.2 Get Name

Description:
The get name service returns a pointer to the name corresponding to the input object/group instance
identifier.

Location:
#include <ds_api.h>

Specification:
const char *ds_get_name (instance_typ instance);

Parameters:
instance An object or group for which to get the name.

Returns:
A pointer to the name of the object/group if instance is a valid identifier; otherwise, NULL.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.

3.8.3 Get Error Code

Description:
The get error code service returns the error code that has been returned most recently from the DS
regarding the object/group referenced. It is primarily for use by client that is has not associated a
callback routine with one or more DS events.

Location:
#include <ds_api.h>

DS IDD DRAFT Version 1.0

25

Specification:
int ds_get_error_code (instance_typ instance);

Parameters:
instance An object or group for which to get the error code.

Returns:
An error code if instance is a valid identifier; otherwise, -1.

DS Response:
NA

Error Codes:
None

3.8.4 Set User Data

Description:
The set user data service allows a client to associate data with an instance of an object or group. The
service does not require any particular form for the data. Its form and use are strictly client-
determined. Note: One set of user data is available for setting for each object or group. This is not the
same user data associated with an event-specific callback for an object or group. Each of these
callbacks can have a different user data item (specified as user_data_ptr in the
ds_register_callback service call).

Location:
#include <ds_api.h>

Specification:
int ds_set_user_data (instance_typ instance,
 PTR data);

Parameters:
instance An object or group for which to set the user data.
data The user data to associate with the instance.

Returns:
0 if the data is successfully associated with the instance; -1 otherwise.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created
ERR_NO_ERROR The data is successfully associated with the object or group.

3.8.5 Get User Data

Description:
The get user data service allows a client to retrieve data that was previously associated with an instance
of an object or group by the set user data service.

Location:
#include <ds_api.h>

DS IDD DRAFT Version 1.0

26

Specification:
PTR ds_get_user_data (instance_typ instance);

Parameters:
instance An object or group for which to get the user data.

Returns:
A pointer to the user data if instance is a valid identifier; otherwise, NULL.

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_NO_ERROR The data pointer is successfully returned.

3.8.6 Set Trigger Event

Description:
The set trigger service provides a mechanism for associating a DS event with an Object Manager event.
 Warning: This service is provided for Ada clients only. It should not be called from clients written in
C.

Location:
#include <ds_api.h>

Specification:
ds_status_typ ds_set_trigger_event (instance_typ instance,
 ds_event_typ event,
 int code);

Parameters:
instance An instance of an object or group.
event One of the event identifiers (see Section 3.2.1).
code The code to generate for the Object Manager when the event occurs.

Returns:
ds_status_typ

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_PARAMETER If event is not one of the event identifiers.
ERR_NO_ERROR If the trigger code set is successful.

3.8.7 Get Trigger Event

Description:
The get trigger service returns the external event that is generated when the DS event for the
object/group referenced arrives. Warning: This service is provided for Ada clients only. It should not
be called from clients written in C.

DS IDD DRAFT Version 1.0

27

Location:
#include <ds_api.h>

Specification:
int ds_get_trigger_event (instance_typ instance,
 ds_event_typ event);

Parameters:
instance An instance of an object or group.
event One of the event identifiers.

Returns:
An event identifier (i.e., the code for the set trigger event).

DS Response:
NA

Error Codes:
ERR_UNKNOWN_OBJECT The object or group has not been created.
ERR_PARAMETER If event is not one of the event identifiers.
ERR_NO_ERROR If a trigger code is returned (including NO_TRIGGER).

3.9 Miscellaneous Services

3.9.1 Get Recent Group

Description:
The get recent group service returns the group instance that has received the most recently delivered
group-related event from the DS.

Location:
#include <ds_api.h>

Specification:
instance_typ ds_get_recent_group (void);

Parameters:
None

Returns:
The group from the most recent DS group-related event; NULL_INSTANCE if the API has not yet
received a group-related DS event.

DS Response:
NA

Error Codes:
None

3.9.2 Get Recent Object

Description:
The get recent object service returns the object instance that has received the most recently delivered
object-related event from the DS.

DS IDD DRAFT Version 1.0

28

Location:
#include <ds_api.h>

Specification:
instance_typ ds_get_recent_object (void);

Parameters:
None

Returns:
The object from the most recent DS object-related event; NULL_INSTANCE if the API has not yet
received an object-related DS event.

DS Response:
NA

Error Codes:
None

3.10 Representation and Description Engine (RADE)

TBD

DS IDD DRAFT Version 1.0

29

4. Requirements Traceability

This section has been tailored out.

DS IDD DRAFT Version 1.0

30

5. Notes

The sections of this chapter provide background information for understanding the general operation of the
DS, the use of the API, and the relationship of the DS API to other APIs which support DS use.

5.1 Overview

5.1.1 General

The primary function of the DS is to provide a mechanism for the distribution of data between clients. The
DS is implemented as a client-server architecture that provides a central repository of data for a distributed
system. It provides functions to allow a client to send and receive data, store data for retrieval during a
subsequent execution (persistent storage) and log data (for later analysis). It also provides the developer
with debugging capability from the unit level through system level.

The DS supports a very small command set for data manipulation. This command set allows clients to
create/destroy data object, read/write data objects, and subscribe to changes in data objects. It also provides
for grouping of related data objects. Data objects in the API and DS do not have structure; they are simply
block of data. The DS sends and receives these blocks of data without the need to know their content. It is
the client that gives meaning to the contents of data objects.

Persistent storage is a mechanism by which the DS and clients can recover from an unexpected system
shutdown (i.e., a client process or DS terminates abnormally). When the client creates data objects, it can
set the persistence attribute. This attribute informs the DS that any changes (writes) to the data object
should also be written to a persistent storage file. For example, a client could create a data object that
contains information describing the state in which the client is executing. If for some unforeseen reason the
client terminates, upon restart, it could reconnect to the DS and retrieve this “state” object to determine its
state prior to the unexpected termination. This method is not foolproof, but it does provide a mechanism by
which clients can recover from system faults with a reasonable degree of certainty.

Data logging is a mechanism clients can use to record data for analysis during/after execution. The log is a
file containing a time ordered set of selected objects. Whenever any of the selected objects is set into the
DS (via a ds_set service request), that object is time-stamped and written into the log file. A client can
select an object for logging by setting the LOG_DATA_OP when it creates the object.

5.1.2 Groups

TBD

5.1.3 Objects

TBD

5.1.4 Normal Event Handling

TBD

5.2 Theory of Operation

TBD

5.2.1 The Event Model

TBD

DS IDD DRAFT Version 1.0

31

5.2.2 Object Writer

TBD

5.2.3 Object Reader

TBD

5.2.4 Object Subscriber

TBD

5.3 The Subscription (Automatic Data Forwarding)

TBD

DS IDD DRAFT Version 1.0

32

6. Acronyms

API Application Program Interface
CSC Computer Software Component
DS Data Server
IDD Interface Design Description
RADE Representation and Description Engine
TCS Tactical Control System

